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The frequencies of drop breakage and coalescence in a batch mixer are described by power 
functions of drop sizes. The shape of a steady state drop size distribution corresponding to the 
power functions is correlated with their exponents. The use of this correlation for direct determina
tion of linear combination of power functions exponents from an experimental drop size distri
bution is demonstrated . 

The breakage and coalescence of drops in a dispersion under turbulent regime are 
significant processes, which, however, do not permit an easy access in direct investiga
tion. At present we lack their experimentally verified mathematical description. 
Besides the direct observation of these phenomena, other quantities and processes 
influenced by them may be investigated, e.g. the tracer spreading rate in the dispersed 
phase or the time variation of drop size distribution and its steady state. Comparing 
the respective measured values with those calculated from the mathematical model 
the most suitable relations for the breakage and coalescence rates may be identified. 

The most often considered type of the dependence of breakage and coalescence 
frequency of the drop size are power functions l -

7
• Their significant advantage con

sists in their simplicity which in some cases makes even possible an analytical solu
tion of the dispersion model. The purport of this study is to find connections between 
the parameters of power functions and the shape of the steady state drop size distribu
tion in a model of a batch mixer. 

THEORETICAL 

Breakage and Coalescence Functions 

Drop breakage and coalescence are described by means of four functions 8
: drop 

breakage frequency, volume distribution of daughter drops, average number of daugh
ter drops from a single mother drop and coalescence frequency of drops of volumes v 
and v', which is the product of collision frequency and efficiency. Let the drop brea-
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kage frequency be 

(1) 

and the drop coalescence frequency 

(2) 

or 

(3) 

Let us suppose that during each breakage a pair of drops originates. The distribu
tion of daughter drop volumes v' from the mother drop of volume v is given alternati
vely by the delta function 

/31(V, v') = b(v' - v12) (3) 

which corresponds to the splitting of drops into halves ; the normal distribution 

/32(V, v') = [1 /(y'2rc) s] exp [ -(v' - v12Y12s2] , (5) 

where the standard deviation s is chosen so as to make the fraction of daughter drops 
overlapping the interval (0; v) negligible; the uniform distribution of daughter drops 

/33(V, v') = I/v, v' E (0; v) . (6) 

From these expressions for g, wand /3 six variants of the breakage and coalescence 
model arise (Table I). 

Drop Population Balance 

The balance of the number of drops of size v in a batch mixer for the binary breakage 
is 2 

dnA(v) dt = 0·5 {w(v', v - v') nA(v')nA(v - v') dv' - g(v) nA(v) + 

+ 2 f~g(v') /3(v', v) nA(v') dv' - f~ w(v, v' - v) nA(v)nA(v' - v) dv' . (7) 

In steady state d nA(v)/dt = 0, and the solution of (7) for a =f b is 

A(v) = KV~-b-l j(x) , (8) 
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where 

The function j(x) of the dimensionless variable fulfils the condition 

f~ A(v) dv = f~ Xa
-

b
-

1 j(x) dx = 1 -

2395 

(9) 

(10) 

(11) 

Simultaneously, it is the solution of an integral equation independent of the coeffi
cients Cl , C2 resulting by the substitution of g, W, f3 into the population balance (7)_ 
Thus, for the coalescence frequency WI 

0-5 [xb f:X,a- b-l(x - x,)a- b- l j(x') j(x - x') dx' - X2a - b- l j(x)] + 

+ f: [x'2a - b- lf3(x' , x) j(x') - X'bX· -b-l(X' - X)· - b- l j(x) j(x' - x)] dx' = 0_ 

(12) 

Particularly, for a = b + 1, W = Wl' f3 = f33 , Rod9 has found the following analyti
cal solution of the population balance: 

j(x) = exp (-x), A(v) = K exp (-Kv)_ 

For the coalescence frequency W2, it holds 

0-5 [J:x,a-b/2-1(x - X')·-b/Z - l j(x') j(x - x') dx' - X2.- b- l j(x)] + 

TABLE I 

Model variants 

Coalescence 
D aughter drop distribution 

frequency 
fJ l fJ2 fJ3 

COl A B C 

co2 D E F 
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+ f~[x'2a-b-lp(X"X)f(X') - Xa - b/ 2 - 1(X' - X)a - b/2-1 f(x)f (x' - x)]dx' = O. 

(14) 

If b = 2m, a = m + 1, W = Wz, P = P3 a problem, solved analytically by Bajpai 
and coworkers 7, arises. From Eqs (8) -(11), (14) it follows 

f(x) = exp [-r(l - m)l /(l-m) x], 

A(v) = Kv- m exp (-[K r(l - m)]I/(l - m) v) for m < I. (15) 

If m ~ 1 or a ;;;,; b, the integral on the Ihs of (n) diverges and the problem has no 
solution. 

This fact may be generalized. The model of dispersion (7) with power functions 
(1)-(3) has a meaningful physical solution in the region a > '·b. With the decreasing 
difference of the exponents the steady state drop size decreases; in the limit a -t b 
the solution of population balance is A(v) = b(v), which means an infinite number 
of droplets of zero-size. 

The mean drop volume may be calculated from (8): 

(v) = f~VA(V) dv = K-l/(a - bJ~xa-b f(x) dx. (16) 

Because 

(17) 

the mean volume as a function of hold-up is: 

Normalized Drop Size Distribution 

Relating the drop size in the distribution (8) to a mean drop size for the given dis
persion, a normalized dimensionless drop size distribution arises, independent of the 
coefficients C1 , Cz. As the coefficients C1 , C2 change with the intensity of mixing 
and with the composition of liquid phases, while the exponents a, b are directly 
connected with the mechanism of breakage and coalescence and therefore remain 
constant in a wide range of experimental conditions, the normalized shape of distri
bution is especially suitable for investigation allowing conclusions of general validity. 
Following Chen and Middleman10 the volume distributioll as a fUllction of the 
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ratio of the drop diameter to the respective Sauter mean is used. From (8) it results 

(19) 

where 

F = f~ x· - b j(x) dxlG, G = f~ X·-
b

-
I

/
3 j(x) dx . (20) 

The shape of the distribution is characterized by its moments. In the individual 
variants of the model the first moment, the standard deviation derived from the 
second moment, and the asymmetry derived from the third moment of the function 
(19) are investigated. 

For the formulation of Bajpai and coworkers 7 and Rod9 the moments may be 
derived directly from the analytically obtained distribution. The distribution of drops 
in Bajpai's problem is given by (15) and its normalization according to (19) gives 

Av(dld
3 2

) = 3/f (5 /3 - m) [ r(2 - I~ ~J5-3m . exp (_ [ r(2 - 111) ~J3). 
r(5/3 - 111) d32 r(5/3 - m) d32 

This normalized distribution is defined for In < 5/3. Its chara~teristics ar~ 

Ml = 1(5/3 - m) r(7/3 - m)/r(2 - 111)2, 

a = BO,5r(5/3 - m)/f(2 - my, 

(21) 

(22) 

(23) 

Ac = {[(2 - m) r(2 - m)3 -r(7/3 - m)3JIB - 3r(7/3 - m)}IBO,5 , (24) 

where B is 

B = r(8/3 - 111) 1(2 - 111) - 1(7/3 - 111)2. (25) 

Numerical values of the characteristics in dependence on m, calculated from 
(22)-(25), are given in Table II. The first moment of the distribution varies with the 
parameter m very slowly. Almost in the whole range of 111 the asymmetry remains 
low. The mean square deviation is most sensitive to the m values, and therefore it is 
most suitable for the determination of m from the distribution shape. 

The solution described by (13), which was investigated by Rod9 coincides with 
Bajpai's problem, if m = O. In the remaining cases the population balance (7) has 
been solved numerically by means of the method of finite differences with the dis-
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cretization of drop volumes for 40 equidistant values. The procedure is described 
in another work ll

• For each of the six variants of the model the distributions for 
a t least 20 combinations of exponent values were calculated. The exponents were 
chosen in the range 0 ;;; a ;;; 3'5; -3 ;;; b ;;; 1, while a - b ~ 1. The numerical 
solutions of the balance had been normalized before determining their characteristics. 

Correlation of Characteri stics 

The main calculation results are brought together in the correlations of the standard 
deviation of normalized solution with the exponents of breakage and coalescence 
functions. The standard deviation from Table II may be correlated with the para
meter m by a simple relation 

(Je = 0'35(5/3 - mtO. 5J (26) 

which is valid in the range mE < - 3; 2/3) with an accuracy b~tter than 1%. The rela
tion may be expanded on the whole model F, a special case of which the Bajpai's 
problem may be regarded, if it is expressed in the dependence on the linear combina
tion of exponents 

z = a - 1·1b . (27) 

TABLE II 

Characteristics of drop size distribution 

m Ml (F Ae (Fe M 1e 

- 3 1·0249 0·1561 0·014 0·155 1·026 

- 8/3 1·0269 0'1621 0·016 0·161 1'028 

- 7/3 1·0293 0·1689 0·018 0·168 1·030 
- 2 1·0321 0'1766 0·020 0'176 1·033 

- 5/3 1·0355 0·1 855 0·023 0·185 1-036 

- 4/3 1·0397 0·1958 0·027 0·196 1·041 
- 1 1'0450 0·2082 0'032 0·208 1-046 

- 2/3 1-0519 0'2231 0·038 0·224 1·053 

- 1/3 1-0613 0·2418 0·048 0·243 1-062 

0 1-0748 0·2662 0·059 0·267 1·075 

1/3 1·0957 0·2998 0·079 0·301 1-095 

2/3 1·1321 0·3503 0·111 0·350 1-130 

1 1'2092 0·4395 0·168 

4/3 1'4610 0·6682 0·290 

5/3 00 00 0'633 
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After rearrangement the standard deviation of the distribution is 

(Ie = 0·386(z + 1)-0.53. (28) 

By comparing this correlation with the calculations the relative mean error of 2% 
has been found. The fit might have been increased introducing a more elaborate 
function than the linear combination of exponents (27), but the precision achieved 
fully complies with the purpose of the present study. 

For the remaining models similar correlations given in the (Ie column of Table III 
have been found. Sub Sa in Table III the mean relative deviations of the (I values 
calculated by solving the balance from those corresponding to the correlation are 
listed. The Table also contains the correlation of the first moment with the standard 
deviation of the distribution and its mean relative deviation from the correlated 
first moments S~,," 

The asymmetry is not so unambiguously connected with the standard deviation 
of the distribution as its first moment. In models A, D it is positive in the whole 
range of the calculation, its value being Ae = 0·22 ± 0·13, in the models B, E 
Ae = 0·13 ± 0·07. In the models C, F for small values of differences of the exponents 
it is close to zero: Ae = ±0·05 for 1 ~ z ~ 2. For higher z values the fluctuation 
of the asymmetries calculated for different variants C, F increases, the Ae values 
values ranging from - 0·3 to O. 

Consequently, the six investigated models split into pairs A-D, B-E, C-F, 
with frequency ill, given by (2) or (3) in each pair. From Eq. (2) and (3) follows the 
fact that for b = 0 both models in each pair coincide. The calculation results show 
that for b 9= 0 the exchange of both coalescence functions causes only insignificant 
changes in the shape of the normalized distribution, the pairs having common cor
relations in the whole range of the calculations. 

The models with different distributions of daughter drop sizes, however, are 
distinguished more clearly. The bisection of drops in the models A, D and the uni
form volume distribution in the models C, F are the boundary instances, between 

TABLE III 

Correlation of characteristics 

Model a e sa' % M 1e sM'% 

0.345(z + 1)-0.55 1 + 0·99a2 0·05 
0.350(z + 1)-0.54 1 + a2 0·05 
0.386(z + 1)-0.53 1 + 1.060-2 0·1 

A, D a - 0·75b 
B, E a - 0·8b 
C, F a - l-lb 
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which the normal distribution of the models B, E is situated. For the models dif
fering in the function f3 the drop bisection leads to the narrowest drop size distribu
tion with the smallest standard deviation. 

Comparison with Data 

Experimental drop size distributions were obtained by Chen and Middleman lo 

by means of photographing the dispersion in batch mixer at a low hold-up of dis
persed phase. The set of the results of 112 experiments differing in the chemical 
composition of the liquids, and in impeller frequency and size, was correlated by a 
single normalized distribution 

(29) 

with the characteristics Ml = 1,06, (J = 0,23, Ae = O. 

The models corresponding to this distribution have been determined according 
to Table III. After substituting (J = 0·23 into the correlations M Ie' the results are 
for A, D M lc = 1'052, for B, E M lc = 1·053 and for C, F M 1c = 1'056, which is 
nearest to 1·06. Also the requirement of zero symmetry is best fulfilled by the models 
C, F. Consequently the experimental data (29) shall be modelled by the variants C, F. 

By the substitution of (Je = 0·23 into the correlation fJom Table III, Z = 1·66 
is calculated. The model sought thus consists of the following functions: 

g(v) = Clva
, 

w(v, v') = C2(v + V')b or w(v, v') = CiVV/)b/2, 

f3(v, v') = 1/v, 0 < v' < v, 

FIG. 1 

(30) 

Normalized distributions according to mo
del F. - ---- a = 1, b = 0, J = 0'058~ 
-.-.-.- a = 1, b = -0,6, J = 0'003; - .. -.- .. 
a = 1, b = -2, J = 0'132, - - experi
mental distribution according to Chen and 
MiddlemanlO 

Collection Czechoslovak Chern. Cornrnun. [Vol. 47] [1982b 



Power Functions of Breakage and Coalescence 2401 

with exponents 

a - 1·1 b = 1·66. (31) 

From the range of the exponents, for which the validity of the correlation has been 
verified, follows ° ~ a ~ 2·76. 

The correctness of the result was checked by the calculation of drop size distribu
tion in the points (a = 0, b = -1·51), (a = 1, b = -0·6) and (a = 2, b = 0·31) 
for the variants C, F. Characteristics of these distributions are, according to expecta
tions, within the range M 1 E <1·055; 1·057) , (J E <0·229; 0·234), Ac E < -0·1; 0). 
Quantitatively, the overall fit of the distribution with the experimental distribution 
(29) was evaluated by means of the criterion 

(32) 

which may range from zero to one. A few examples of distributions with the res
pective J values are given in Fig. 1. The six distributions tested imply the range 
0·002 ~ J ~ 0·010 which demonstrates that the proposed models are good repre
sentations of the experimental distributions. 

LIST OF SYMBOLS 

A(v) 

Ac 
Av(d /dd 
Ave(d/d32) 
b 
C1 
C2 
d 

d32 
f(x) 

g(v) 
J 
K = 2C1/ IIC2 

m = b/2 

Ml 
M 1c 

v, v 

breakage frequency exponent 
frequency distribution of drop sizes, L - 3 

asymmetry of normalized distribution 
normalized volumetric drop size distribution 
normalized experimental distribution 
coalescence frequency exponent 
breakage frequency coefficient, L - 3a T- 1 

coalescence frequency coefficient, L - 3 ( b-l) T- 1 

drop diameter, L 
Sauter diameter, L 
function defined by Eqs (11) , (12) and (14) 
breakage frequency of drops of volume v, T- 1 

criterion of distribution fit , defined by Eq. (32) 
parameter of drop size distribution, L 3(b - a) 

exponent in problem of Bajpai and coworkers 
first moment of normalized distribution 
correlated first moment of distribution 
number of drops in unit volume of dispersion, L - 3 

mean relative deviation of Ml from M 1c 

mean relative deviation of q from q~ 
time, T 
drop volume, L3 
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<v) 
X, X' 

x 

P(v, v') 
u 
U c 

w(v, v') 

mean volume, L3 
dimensionless drop size defined by Eq. (10) 
hold-up of dispersed phase 
linear combination of exponents 
daughter drop size distribution, L - 3 

standard deviation of normalized distribution 
correlated standard deviation of distribution 
coalescence frequency of drops of volumes v and v', L 3 T- 1 
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